3,886 research outputs found

    The Initial Value Problem For Maximally Non-Local Actions

    Get PDF
    We study the initial value problem for actions which contain non-trivial functions of integrals of local functions of the dynamical variable. In contrast to many other non-local actions, the classical solution set of these systems is at most discretely enlarged, and may even be restricted, with respect to that of a local theory. We show that the solutions are those of a local theory whose (spacetime constant) parameters vary with the initial value data according to algebraic equations. The various roots of these algebraic equations can be plausibly interpreted in quantum mechanics as different components of a multi-component wave function. It is also possible that the consistency of these algebraic equations imposes constraints upon the initial value data which appear miraculous from the context of a local theory.Comment: 8 pages, LaTeX 2 epsilo

    The Fermion Self-Energy during Inflation

    Full text link
    We compute the one loop fermion self-energy for massless Dirac + Einstein in the presence of a locally de Sitter background. We employ dimensional regularization and obtain a fully renormalized result by absorbing all divergences with BPHZ counterterms. An interesting technical aspect of this computation is the need for a noninvariant counterterm owing to the breaking of de Sitter invariance by our gauge condition. Our result can be used in the quantum-corrected Dirac equation to search for inflation-enhanced quantum effects from gravitons, analogous to those which have been found for massless, minimally coupled scalars.Comment: 63 pages, 3 figures (uses axodraw.sty), LaTeX 2epsilon. Revised version (to appear in Classical and Quantum Gravity) corrects some typoes and contains some new reference

    Model-based clustering for online crisis identification in distributed computing

    Get PDF
    Abstract Distributed computing systems can suffer from occasional catastrophic violation of performance goals; due to the complexity of these systems, manual diagnosis of the cause of the crisis is prohibitive. Recognizing the recurrence of a problem automatically can lead to cause diagnosis and / or informed intervention. We frame this as an online clustering problem, where the labels (causes) of some of the previous crises may be known. We give an effective solution using model-based clustering based on a Dirichlet process mixture; the evolution of each crisis is modeled as a multivariate time series. We perform fully Bayesian inference on clusters, giving a method for efficient online computation. Such inferences allow for online expected-cost-minimizing decision making in the distributed computing context. We apply our methods to Microsoft's Exchange Hosted Services

    New coherent detector for terahertz radiation based on excitonic electroabsorption

    Full text link
    We demonstrate a new technique for the coherent measurement of free‐space THz electrical transients, based on the parallel‐field excitonic electroabsorption effect in GaAs quantum wells. A THz transient generated from a photoconductive dipole antenna is measured with a rise time of 290 fs and a full width at half maximum of 360 fs. The initial rise of the THz wave form is abrupt, and does not display the exponential leading edge apparent in waveforms measured with photoconductive techniques. The detector sensitivity is sub‐100 mV/cm.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70714/2/APPLAB-61-15-1763-1.pd

    Digital Equity in the Time of COVID: Student Use of Technology for Equitable Outcomes

    Get PDF
    This issue brief is the third and final in a series published by the Metropolitan Educational Research Consortium (MERC) addressing digital equity in K-12 schools. It examines research regarding students’ use of and outcomes related to technology. Research finds that inequities exist in use and outcomes for students based on gender, language, ability, race, SES and other sociocultural factors. Based on these inequities, theoretical and practical recommendations are discussed

    Unruh response functions for scalar fields in de Sitter space

    Full text link
    We calculate the response functions of a freely falling Unruh detector in de Sitter space coupled to scalar fields of different coupling to the curvature, including the minimally coupled massless case. Although the responses differ strongly in the infrared as a consequence of the amplification of superhorizon modes, the energy levels of the detector are thermally populated.Comment: 16 pages, 1 figure, accepted for publication by Classical and Quantum Gravit

    Teachers as writers: a systematic review

    Get PDF
    This paper is a critical literature review of empirical work from 1990-2015 on teachers as writers. It interrogates the evidence on teachers’ attitudes to writing, their sense of themselves as writers and the potential impact of teacher writing on pedagogy or student outcomes in writing. The methodology was carried out in four stages. Firstly, educational databases keyword searches located 438 papers. Secondly, initial screening identified 159 for further scrutiny, 43 of which were found to specifically address teachers’ writing identities and practices. Thirdly, these sources were screened further using inclusion/exclusion criteria. Fourthly, the 22 papers judged to satisfy the criteria were subject to in-depth analysis and synthesis. The findings reveal that the evidence base in relation to teachers as writers is not strong, particularly with regard to the impact of teachers’ writing on student outcomes. The review indicates that teachers have narrow conceptions of what counts as writing and being a writer and that multiple tensions exist, relating to low self-confidence, negative writing histories, and the challenge of composing and enacting teacher and writer positions in school. However, initial training and professional development programmes do appear to afford opportunities for reformulation of attitudes and sense of self as writer

    Backreaction from non-conformal quantum fields in de Sitter spacetime

    Full text link
    We study the backreaction on the mean field geometry due to a non-conformal quantum field in a Robertson-Walker background. In the regime of small mass and small deviation from conformal coupling, we compute perturbatively the expectation value of the stress tensor of the field for a variety of vacuum states, and use it to obtain explicitly the semiclassical gravity solutions for isotropic perturbations around de Sitter spacetime, which is found to be stable. Our results show clearly the crucial role of the non-local terms that appear in the effective action: they cancel the contribution from local terms proportional to the logarithm of the scale factor which would otherwise become dominant at late times and prevent the existence of a stable self-consistent de Sitter solution. Finally, the opposite regime of a strongly non-conformal field with a large mass is also considered.Comment: 31 page

    Consistent modified gravity: dark energy, acceleration and the absence of cosmic doomsday

    Full text link
    We discuss the modified gravity which includes negative and positive powers of the curvature and which provides the gravitational dark energy. It is shown that in GR plus the term containing negative power of the curvature the cosmic speed-up may be achieved, while the effective phantom phase (with ww less than -1) follows when such term contains the fractional positive power of the curvature. The minimal coupling with matter makes the situation more interesting: even 1/R theory coupled with the usual ideal fliud may describe the (effective phantom) dark energy. The account of R2R^2 term (consistent modified gravity) may help to escape of cosmic doomsday.Comment: LaTeX file, 9 pages, based on the talk given by S.D. Odintsov (Int. Conference Mathematical Methods in Physics, Rio de Janeiro, Augest, 2004), to appear in CQG, Letter

    One Loop Graviton Self-Energy In A Locally De Sitter Background

    Get PDF
    The graviton tadpole has recently been computed at two loops in a locally de Sitter background. We apply intermediate results of this work to exhibit the graviton self-energy at one loop. This quantity is interesting both to check the accuracy of the first calculation and to understand the relaxation effect it reveals. In the former context we show that the self-energy obeys the appropriate Ward identity. We also show that its flat space limit agrees with the flat space result obtained by Capper in what should be the same gauge.Comment: 35 pages, plain TeX, 4 Postscript files, uses psfig.sty, revised June 1996 for publication in Physical Review
    • 

    corecore